Electrospun CuO-Nanoparticles-Modified Polycaprolactone @Polypyrrole Fibers: An Application to Sensing Glucose in Saliva
نویسندگان
چکیده
A non-invasive method for detecting glucose is pursued by millions of diabetic patients to improve their personal management of blood glucose. In this work, a novel CuO nanoparticles (NPs) decorated polycaprolactone@polypyrrole fibers modified indium-tin oxide (denoted as CuO/PCL@PPy/ITO) electrode has been fabricated by electrospinning combined with the electrodeposition method for non-enzymatic detection of glucose in saliva fluid. The electrospun composite fibers exhibit high sensitivity for the glucose detection. The synergistic effect between CuO and PPy together with the unique three-dimensional net structure contributes the reliable selectivity, good test repeatability, large-scale production reproducibility in massive way, the reasonable stability and a high catalytic surface area to the sensor. Quantitative detection of glucose is determined in the linear range from 2 μM to 6 mM and the lowest detection limit is 0.8 μM. The CuO/PCL@PPy/ITO electrode shows potential for the non-invasive detection of salivary glucose.
منابع مشابه
Imparting electroactivity to polycaprolactone fibers with heparin-doped polypyrrole: Modulation of hemocompatibility and inflammatory responses.
Hemocompatibility, anti-inflammation and anti-thrombogenicity of acellular synthetic vascular grafts remains a challenge in biomaterials design. Using electrospun polycaprolactone (PCL) fibers as a template, a coating of polypyrrole (PPy) was successfully polymerized onto the fiber surface. The fibers coated with heparin-doped PPy (PPy-HEP) demonstrated better electroactivity, lower surface res...
متن کاملApplication of copper oxide nanoparticles modified glassy carbon electrode for electrocatalytic oxidation of methanol
Copper nanoparticles were fabricated by electro-reduction of CuSO4solution in the presence of cetyltrimethylammonium bromide (CTAB) cationic surfactant as an additive through potentiostatic method. The prepared copper nanoparticles were characterized by scanning electron microscopy (SEM) and electrochemical methods. The SEM images reveal that the nanoparticles with diameters at about 70 n...
متن کاملEffect of Nanoclay Addition on the Properties of Polycaprolactone Nanocomposite Scaffolds Containing Adipose Derived Mesenchymal Stem Cells used in Soft Tissue Engineering
Tissue-engineering scaffolds provide biological and mechanical frameworks for cell adhesion, growth, and differentiation. Nanofibrous scaffolds mimic the native extracellular matrix (ECM) and play a significant role in formation and remodeling of tissues and/or organs . One way to mimic the desired properties of fibrous ECM is adding nanoparticles into the polymer matrix. In the current study, ...
متن کاملSynthesis of Polypyrrole Coated SnO2-ZnO Electrospun Nanofibers via Vapor Phase Polymerization Method
This paper reports the synthesis of polypyrrole coated SnO2/ZnOelectrospunnanofibers via vapor phase polymerization method. In order to prepare one dimensional (SnO2- ZnO)/polypyrrole with the core sheath structure, first SnO2-ZnO composite nanofibers were synthesized via electrospinning method followed by adsorption of Fe 3+ on the surface of the SnO2-ZnO nanofibers and finally pyrrole w...
متن کاملFabrication, characterization, and microscopic imaging of Fe2O3-modified electrospun nanofibers
This study explored the fabrication, characterization, and microscopic imaging of highly porous electrospun nanofibers based on pure and Fe2O3 nanoparticle modified polyacrylonitrile (PAN) fibers. The desired electrospinning mixture comprising polymer and nanoparticles in dimethyleformamide, was prepared. During electrospinning, the precursor solution was injected using a ...
متن کامل